~OSITIVE TECHNOLOGIES

———p—
e— ===
——— ==
————
e ———
T———
e i

POSITIVE TECHNOLOGIES'

George Argyros and Aggelos Kiayias have published recently an awesome research concerning
attacks on pseudo random generator in PHP. However, it lacked practical tools implementing this
attack. That is why we conducted our own research which led to the creation of a program to
perform the bruteforce of PHPSESSID.

How can we get mt_rand seed via PHPSESSID?
PHPSESSID is generated this way:
md5(client IP . timestamp . microseconds® . php combined lcg())

e client IPis known to the attacker;

e timestamp is known through Date HTTP-header;

e microseconds® — a value from 0 to 1000000;

e php_combined_lcg() — an example value is 0.12345678.

To generate php_combined_lcg(), two seeds are used:

S1
S2

timestamp XOR (microseconds? << 11)
pid XOR (microseconds® << 11)

e timestamp is the same;

e microseconds’ is greater than microseconds® (when the first time measurement was made)
by 0-3;

e pidis the id of the current process (032768, 1024-32768 on Unix);

e microseconds? is greater than microseconds’ by 1-4.

The greatest entropy is contained in microseconds’, however with the use of two techniques it can
be substantially reduced.

Adversarial Time Synchronization

The technique is aimed at sending pairs of requests so that to determine the moment when the
second in the Date HTTP header changes.

HTTP/1.1 200 OK
Date: Wed, 08 Aug 2012 06:05:14 GMT

HTTP/1.1 200 OK
Date: Wed, 08 Aug 2012 06:05:15 GMT

If it happened, the microseconds between our requests zeroed. By sending requests with dynamic
delays it is possible to synchronize local value of microseconds with the server one.

Not So Random Numbers. Take Two 2

I

POSITIVE TECHNOLOGIES

Request Twins

The principle of this technique is simple. The attacker needs to send two requests: the first one — to
reset their own password and the second one — to reset that of an administrator. The gap between
microseconds will be minimal.

To sum up, an MD5 PHPSESSID hash is bruteforced for microseconds, the deltas of subsequent time
measurements, and pid. As for pid, the authors have not mentioned such a great helper as Apache
server-status which reveals among other information the pids of the processes which serve the
requests.

To realize the bruteforce, a module for the popular program PasswordsPro has been initially created.
However, this solution made it impossible to take into account the positive linear correlation
between deltas of microseconds, so it bruteforced the full range of values. The speed was about 12
million hashes per second.

That is why we created our own GUI application for this task.

PHPSESSID Seed Bruteforce (wwwptsecurity.ru) = = bruteforce_seed @
Current hash a
d6a67 240634 7ahcbf4decd 1956304 { 1 SEE[{: 127.0.0.11234567890155288 11763087
Y PID = 11524
- IP=1270041
3 =3 = SEC = 1234567890
ynamic Parameters USEC = 15528
USEC PID Deltal Delta2 COMB_LCG = 8117630958557
L0 L0 L1 Lz S1 = 1215515346
S2 = 31814916
R 25000 R 32768 R 1 R 2 DELTAL =1
DELTAZ =2
Static Parameters The time of bruteforce is 50 sec
COUMT = 555419695
IF 127.0.0.1 SEC 12345678590

SPEED = 11024606 hash/sec

@ Processed hash 555419695 of 819257769 (67.80 %)
[
(N

TIME = 50 sec SPEED = 10508000 hash/fsec ETA = 25 sec

Count thread [} 8 THREAD
Thread priority ﬂ NORMAL
Time update H 1000 MSEC

The speed is about 16 million hashes per second, seed calculation takes less than an hour on 3.2 GHz
Quad Core i5.

Having pid and php_combined_Icg one can compute the seed used in mt_rand. It is generated this
way:

(timestamp x pid) XOR (10° x php combined lcg())

Besides, php_combined_lcg is used as additional entropy for the unigid function (if it is called with
the second argument being true).

Not So Random Numbers. Take Two 3

http://bit.ly/RCi5CW

—
e— ===
——— ==
e ————
e ———
T———
e

POSITIVE TECHNOLOGIES

So, if a web application uses standard PHP sessions, it is possible to obtain the random numbers
generated via mt_rand(), rand(), and unigqid().

How can we get mt_rand seed through one of the random numbers leakage?

The seed used for mt_rand is an unsigned integer 2732. If a random number leaked, it is possible to
get the seed using PHP itself and rainbow tables. It takes less than 10 minutes.

The scripts to generate rainbow tables, search the seed, and ready-made tables are available here:
http://www.gat3way.eu/poc/mtrt/

rﬂﬂ'cmd lJEiLEEJ!:§§5j1

Done preloading rainhow tables

Searching the seed of 155014399

Cisstuffstoolssmtrt >php rtsearch.php 1770271724

Motice: Undefined offset: 1 in C:swstuffstools“mtrtsrtsearch.php on line 40
Done preloading rainbow tahles

Searching the seed of 1770291724

Cisstuff«toolssmtrt>php vtsearch.php 1448326737

Motice: Undefined offszet: 1 in Cossztuffstoolssmtprtsptsearch_.php on line 40
Done preloading rainhow tables

Searching the seed of 1448326739
(1448326%739> — 219505087 <676.88527)

Ciwstuffstoolssmtrt >

|

What to look for in the code?

All the mt_rand(), rand(), uniqid(), shuffle(), lcg_value(), etc. The only secure function is
openssl_random_pseudo_bytes(), but it is rarely used in web applications. The main ways of defense
against such attacks are the following:

e MySQL function RAND() — it can be also predicted though.

e Suhosin patch — does not patch mt_srand, srand. The Suhosin extension should also be
installed.

e /dev/urandom — the securest way.

Not So Random Numbers. Take Two 4

http://www.gat3way.eu/poc/mtrt/

I

POSITIVE TECHNOLOGIES

All YOUR BANIIIIM
NIIMBEBS

117.":lﬂi‘:g('l‘.ﬁ'.’(‘.[l,l net

Not So Random Numbers. Take Two

Www.ptsecurity.ru
pt@ptsecurity.ru

+7 (495) 744 01 44

