
ptsecurity.com

Web application
vulnerabilities
and threats:
statistics for 2019

Contents

Trends	 3

Assessment of web application security	 4

Most common vulnerabilities	 5

Threat analysis 	 8

Vulnerabilities in testbed and production applications	 10

White-box security assessment	 11

Conclusion	 12

Client snapshot	 13

Materials and methods	 14

Executive summary
The overall security of web applications has continued to improve,

but still leaves much to be desired.

Key takeaways regarding web applications:

	� Hackers can attack users in 9 out of 10 web applications. Attacks

include redirecting users to a hacker-controlled resource, stealing

credentials in phishing attacks, and infecting computers with malware.

	� Unauthorized access to applications is possible on 39 percent

of sites. In 2019, full control of the system could be obtained on 16

percent of web applications. On 8 percent of systems, full control of

the web application server allowed attacking the local network.

	� Breaches of sensitive data were a threat in 68 percent of web

applications. Most breachable data was of a personal nature (47% of

breaches) or credentials (31%).

Vulnerability statistics:

	� 82 percent of vulnerabilities were located in application code.

	� The average number of vulnerabilities per web application fell

by a third compared to 2018. On average, each system contained

22 vulnerabilities, of which 4 were of high severity.

	� One out of five vulnerabilities has high severity.

2

Trends
The percentage of web applications containing high-risk vulnerabilities in

2019 fell significantly, by 17 percentage points compared to the prior year.

The average number of severe vulnerabilities per web application also fell,

by almost one third.

Figure 1. Websites by maximum severity of vulnerabilities found

Figure 2. Websites by vulnerability severity

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90%

100% 100% 100%

93%

84%

89%

74%

67%

50%

80%

68%

58%

52%

67%

50%

70%

97%

2014 2015 2016 2017 2018 2019

High Medium Low

The last five years show a reduction in the percentage of sites containing

severe vulnerabilities. This is an encouraging sign consistent with an overall

improvement in security.

0% 100%

2015

2016

11%

2018

2017

2019
39%50%

5%28%67%

1%41%58%

30%70%

48%52%

High Medium Low

0% 100%

2015

2016

11%

2018

2017

2019
39%50%

5%28%67%

1%41%58%

30%70%

48%52%

High Medium Low

3

Assessment of web application
security

5,7

12,3

High

Medium

Low

4,1

55%26% 19%

Medium

High

Low

Figure 3. Average number of
vulnerabilities per application

Figure 4. Vulnerabilities by severity

Figure 5. Vulnerabilities of various severity levels, by industry

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0%

Acceptable Medium Low

Above average Below average Extremely poor

Government

Telecom

IT

Manufacturing

Financial institutions

Web application security is measured by our experts in the course of

testing and assessment. The level they assign depends on the potential

impact on the particular system in question, in the context of the kinds

of information processed on that system.

4

Most common vulnerabilities

A6 — Security Misconfiguration 84%

A7 — Cross-Site Scripting (XSS) 53%

A2 — Broken Authentication 45%

A5 — Broken Access Control 37%

A1 — Injection 29%

A9 — Using Components
with Known Vulnerabilities 13%

A3 — Sensitive Data Exposure 13%

A4 — XML External Entities (XXE) 5%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0%

High Medium Low

Figure 6. Most common OWASP Top 10 vulnerabilities (percentage of web applications)

The most commonly encountered web application vulnerabilities in 2019

involved Security Misconfiguration. One out of every five tested applica-

tions contained vulnerabilities allowing the hackers to attack a user session,

such as sensitive cookies without the HttpOnly and Secure flags. Attackers

can use such flaws to perform Cross-Site Scripting (XSS) in order to cap-

ture the user's session identifier and impersonate the user in the application.

Broken Authentication was found in 45 percent of web applications. Almost

a third of such vulnerabilities consist of failure to properly restrict the num-

ber of authentication attempts. An attacker can exploit this to bruteforce

credentials and access the web application. For instance, one of the appli-

cations could be accessed with administrator rights after only 100 attempts.

Password-only authentication is a contributing factor in most

authentication attacks. Password age and complexity requirements that

previously were the "gold standard" now are found to undermine security.

According to the latest recommendations by the NIST, organizations

should move to multifactor authentication if they have not already.

5

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf

31%6%8% 13%

25%17%

Improper Authentication (CWE-287)

Weak Password Recovery Mechanism
for Forgotten Password (CWE-640)

Improper Restriction of Excessive
Authentication Attempts (CWE-307)

Weak Password Requirements (CWE-521)

Other

Insufficient Session Expiration (CWE-613)

Figure 7. Vulnerabilities related to Broken Authentication

Every third application in 2019 had Broken Access Control. Bypassing

access restrictions usually leads to unsanctioned disclosure, modification, or

destruction of data. In one tested application, insecure authorization allowed

changing the profile of any user. Positive Technologies specialists found out the

username of the application administrator, replaced the corresponding email

address in the user profile with an address of their own, and then used the

standard password reset procedure to access the site with administrator rights.

It is usually possible to minimize authentication and authorization vulnerabilities

by following the Secure Software Development Lifecycle (SSDLC) during web

application development.

In addition to the Top 10 2017 vulnerabilities, OWASP points out a number of

flaws to check for.1 We found a third of web applications to be vulnerable to

clickjacking (User Interface Misrepresentation of Critical Information, CWE-

451). Another third were vulnerable to Cross-Site Request Forgery (CSRF). In

a CSRF attack, the hacker uses specially crafted scripts to perform actions

posing as a user logged in to a vulnerable web application. Imagine you are

logged in to a website vulnerable to CSRF—an online bank, for example. You

receive a phishing message with a link and click that link. Next, the hacker

1.	 owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

In a clickjacking attack, the user is usually already on the attacker's site

and tempted to click a button promising great discounts or the secret to

eternal youth. On top of that button, the malefactor places a transparent

HTML frame (iframe) belonging to a vulnerable site. So when the user

clicks the button, this results in an unintended action on the vulnerable

site, such as liking someone's photo. This quickly drives up likes, votes,

and so on. One way to prevent this is to use the X-Frame-Options

HTTP header.

6

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

sends a specially crafted request to the vulnerable site (your online bank)

to perform certain actions that the hacker wants (for instance, transfer

funds to the hacker's accounts). The online bank will not be able to tell this

unauthorized request from a legitimate one unless it uses protection from

CSRF attacks. Protection usually involves requiring unique one-time keys

(CSRF tokens), confirming authenticity (with a password, for example),

making sure that the request is being made by an actual user (perhaps with

CAPTCHA), or setting an additional SameSite flag for cookies.

User Interface Misrepresentation
of Critical Information (CWE-451)

34%

16%

11%

16%

34%

Cross-Site Request Forgery, CSRF (CWE-352)

Unrestricted Upload of File
with Dangerous Type (CWE-434)

Open Redirect (CWE-601)

Server-Side Request Forgery, SSRF (CWE-918)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0%

High Medium Low

Figure 8. Common vulnerabilities not in the OWASP Top 10 (percentage of applications)

7

Threat analysis

Attacks on clients remained a threat for nine out of every ten applications

in 2019, just like in 2018. Cross-Site Scripting (XSS) remains one important

cause. Attackers can infect computers with malware, stage phishing attacks

to grab credentials, say, and perform actions posing as the user. As a gen-

eral recommendation, web applications should sanitize all user input that is

subsequently displayed in a browser, including HTTP request header fields

such as User-Agent and Referer. Potentially unsafe characters that can be

used in HTML page formatting must be replaced with their non-formatting

equivalents. We also recommend using modern web application firewalls,

since they are able to block cross-site scripting.

Client-Side Attacks 92%

Important Information Leakage 68%

Unauthorized Access
to Functions or Content 42%

Unauthorized Application Access 39%

Configuration Information Disclosure 34%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0%

High Medium Low

Figure 9. Top 5 most common treats (percentage of applications)

In spring 2019, owners

of WordPress sites fell victim

to a mass XSS attack targeting

the Yuzo Related Posts plugin.

When important information

is obtained by intruders, it's

usually due to authorization and

authentication failures

in an application.

73%9% 5%3%

10%

Cross-Site Request Forgery, CSRF (CWE-352)

Insufficient Verification
of Data Authenticity (CWE-345)

Cross-Site Scripting, XSS (CWE-79)

User Interface Misrepresentation
of Critical Information (CWE-451)

Other

Figure 10. Vulnerabilities allowing attacks against clients

Breaches of important information are the second-most pressing threat to

site security. In almost half of all breaches (47%), personal data was at risk.

User credentials figured prominently as well (31%). As we can see from our

analysis of 2019 cybersecurity incidents,2 information is the prime target of

hackers when they target organizations.

2.	 ptsecurity.com/ww-en/analytics/cybersecurity-threatscape-2019-q3/

8

https://wordpress.org/support/topic/plugin-redirecting-to-weird-sites/
https://www.ptsecurity.com/ww-en/analytics/cybersecurity-threatscape-2019-q3/

6%14% 2%

47%31%

Credentials

User identifiers

Personal data

Session IDs

Application source code

Figure 11. Breaches of sensitive data

In 16 percent of web applications, severe vulnerabilities allowed taking con-

trol of both the application and the server OS.

For instance, access to a web application can be used to inject a JavaScript

sniffer into its code and attack site users. Sniffers can steal both creden-

tials and personal data, as well as payment card information. Attacks with

JavaScript sniffers were the most dangerous attacks on individuals in 2018–

2019. Since sniffers are injected into code, it takes white-box security anal-

ysis to discover them.

In a targeted attack against a company, web application vulnerabilities can

help with gathering data about the company's internal network, such as

the structure of the network segments, ports, and services. In many cases,

hackers can even access internal network resources and the confidential

data stored there.

Hackers can combine sets of stolen data and use them to attack other

web resources, in so-called credential stuffing. In May 2019, such attacks

affected half a million clients of two online stores.

Most dangerous
threats

In 16%

In 8%
of web applications

of web applications, it is possible

to gain full control

Attacks on LAN resources

are possible

9

https://www.infosecurity-magazine.com/news/over-460-million-eretailer-1/

Vulnerabilities in testbed
and production applications
The percentage of production systems with high-risk vulnerabilities

declined: 45 percent in 2019 compared to 71 percent in 2018. But this is

still higher than in 2017, when the equivalent figure was 25 percent. Among

testbed systems, the situation is the same as last year. The percentage of

apps with high-risk vulnerabilities was 56 percent.

Figure 12. Most severe vulnerability found (percentage of applications tested)

0% 100%

Production apps

Testbed apps

6%

14%

38%56%

41%45%

High Medium Low

In 2019, production systems made up exactly 50 percent of all tested

apps (versus 79 percent in 2018). During security assessment of produc-

tion systems, companies are loath to risk disrupting their web applications.

Therefore, not all tests are performed and it becomes impossible to demon-

strate exploitation of some potential vulnerabilities. In cases such as these,

demonstrating vulnerabilities on a testbed system is a good option.

We have repeatedly pointed out the importance of a Secure Software

Development Lifecycle. Paying attention to security throughout develop-

ment is always going to be more effective than a haphazard, after-the-fact

approach. When developers race to patch vulnerabilities in a web applica-

tion that is already live, shortcuts and mistakes inevitably result.

Testbed apps

10 20 30 400

2,9

5,8

9,3

3,1

14,5

7,6

Production apps

High Medium Low

Figure 13. Average number of vulnerabilities per application

10

White-box security assessment
In our experience, most site vulnerabilities are caused by errors in web appli-

cation code. This is the main reason for providing testers with the source

code for analysis, or else doing such analysis independently with a code

analyzer as part of a Secure Software Development Lifecycle.

White-box security assessment is performed simultaneously by several

specialists for maximum coverage and detection of as many vulnerabilities

as possible. This work also includes manual and automated code analysis.

Automated detection helps to speed up testing, but requires manual veri-

fication to rule out false positives. While manual methods take longer, the

vulnerabilities detected will be real.
Web application
vulnerabilities in code

82%

Figure 14. Percentage of OWASP Top 10 vulnerabilities detected by white-box testing

During security assessment of one web app, Positive Technologies

experts reviewed the source code of a script. They found a fragment

allowing remote arbitrary code execution. Any external attacker using this

vulnerability could obtain control of the server, read sensitive information,

edit and delete data on the application pages, and bring the site down

entirely. There was a comment from the developer next to the code, which

read simply: "What is this?" Most likely, some other developer left the

comment during debugging and everyone else discounted its importance,

not considering the code's potential consequences.

11

Conclusion
It's fair to say that the security of most web applications is still poor.

Half of sites contain high-risk vulnerabilities. However, every year we

see a steady decrease in the percentage of web applications with

severe vulnerabilities. The average number of such vulnerabilities

per application has fallen by a third compared to 2018. Another pos-

itive trend is that companies are taking security more seriously in not

just public-facing web applications, but in their internal ones too. We

are hopeful that site security will continue improving this year, with a

corresponding drop in successful attacks on web applications.

Achieving and consistently maintaining high security of web appli-

cations is not an easy process. There are two ground rules, however:

	� Fix any detected flaws as soon as possible

	� Make processes automatic wherever possible

To follow these rules, companies should provide developers with

training in secure development methods. Tools for automated

source code analysis are a good complement to security analysis

of web applications. Together, these will reduce the flaws and vul-

nerabilities arising in development. We also recommend preventive

measures such as a web application firewall (WAF). Since web appli-

cations are constantly changing and every new change carries the

risk of introducing a new vulnerability, WAFs offer a robust defense.

To be effective, a WAF must not only detect and prevent known risks

on the levels of application and business logic. It must also detect

exploitation of zero-day vulnerabilities, prevent attacks on users,

and analyze and correlate events for detection of attack chains.

12

Client snapshot

38
web applications

analyzed in 2019
Manufacturing

Government

Financial institutions

IT

Telecom

26%

29%8%16%

21%

Figure 15. Participant portrait

10% 16%

45%8%8% 13%

Java

JavaScript

NodeJS

Other

ASP.NET

PHP

29%71%

Black and gray box

White box

Figure 16. Development tools (percentage of applications)

0% 100%

Testbed apps

Production apps

73%27%

69%31%

White box Black and gray box

Figure 17. Testing methods (percentage of applications)

Figure 18. Methods for testing production and testbed systems

of tested web applications
were production systems

50%

13

Web-Vulnerabilities-2019_A4.ENG.0003.01.

Materials and methods
This report includes data from comprehensive security assessments of

38 fully functional web applications for which in-depth analysis with the

most comprehensive set of tests was performed in 2019. Results of pene-

tration testing, automated scanning, and testing of e-banking systems are

not included here; this information is reviewed in other reports. The data-

set does not include applications whose owners did not consent to use of

results for research purposes.

The security level of each application was measured manually, using black-,

gray-, or white-box methods with the assistance of automated tools. Black-

box testing means looking at an application from the perspective of an

external attacker who has no prior or inside knowledge of the application.

Gray-box testing is similar to black-box testing, except that the attacker is

defined as a user who has some privileges in the web application. White-

box testing refers to security analysis that makes use of all relevant informa-

tion about the information system, including its source code.

Vulnerabilities were classified according to the industry-standard Common

Weakness Enumeration (CWE) system. Because the system is so detailed,

for convenience we have focused on vulnerabilities rated in the OWASP Top

10 (2017) and analyzed how frequently we found them in web applications.

The statistics in this report include only code and configuration vulnerabilities.

Other common security weaknesses, such as failure to install software updates,

are not considered here. Our statistics do not include vulnerabilities related to

OWASP Top 10 2017 category A10 (Insufficient Logging & Monitoring), since

logging and monitoring practices were out of testing scope. Severity was

evaluated based on the Common Vulnerability Scoring System (CVSS v3.1),

assigning each vulnerability a rating of Low, Medium, or High.

Positive Technologies is a leading global provider of enterprise security solutions for vulnerability and compliance
management, incident and threat analysis, and application protection. Commitment to clients and research has
earned Positive Technologies a reputation as one of the foremost authorities on Industrial Control System, Banking,
Telecom, Web Application, and ERP security, supported by recognition from the analyst community. Learn more
about Positive Technologies at ptsecurity.com.

About
Positive Technologies

© 2019 Positive Technologies. Positive Technologies and the Positive Technologies logo are trademarks or registered
trademarks of Positive Technologies. All other trademarks mentioned herein are the property of their respective owners.

ptsecurity.com
info@ptsecurity.com

14

https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.ptsecurity.com/ww-en/
mailto:info%40ptsecurity.com?subject=

	Trends
	Assessment of web application security
	Most common vulnerabilities
	Threat analysis
	Vulnerabilities in testbed
and production applications
	White-box security assessment
	Conclusion
	Client snapshot
	Materials and methods

