
SE
CU

RI
TY

 T
RE

N
D

S
&

VU

LN
ER

A
BI

LI
TI

ES
 R

EV
IE

W
W

EB
 A

PP
LI

C
AT

IO
N

S
20

17

2

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

Contents
Introduction... 3

1. Materials and methods.. 3

2. Executive summary.. 4

3. Participant portrait... 5

4. Trends... 6

5. Manual web application security testing... 7

5.1. Most common vulnerabilities.. 8

5.2. Analysis of threats and security levels... 10

5.3. Statistics by a variety of industries... 13

5.4. Vulnerabilities in web applications by development tools.. 15

5.5. Vulnerabilities in test and production applications.. 18

5.6. Test technique comparative analysis... 19

 6. Automated security assessment... 20

Conclusions... 24

3

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

INTRODUCTION

Every year, web applications expand their presence in more and more areas. Almost every busi-
ness has its own web applications for clients and for internal business processes. However, appli-
cation functionality is often prioritized at the expense of security, which negatively affects the
security level of the entire business.

As a result, web application vulnerabilities provide massive opportunities for malicious actors.
By taking advantage of mistakes in application architecture and administration, attackers can ob-
tain sensitive information, interfere with web application functioning, perform DoS attacks, attack
application users, penetrate a corporate LAN, and gain access to critical assets.

This report provides statistics gathered by Positive Technologies while performing web applica-
tion security assessments throughout 2016. Data from 2014 and 2015 is provided for comparison
purposes.

This information suggests paths of action: which security flaws in web applications require at-
tention during development and operation, how to distinguish potential threats, and what the
most effective techniques for security assessment are. We also illustrate trends over time in web
application development in the context of information security.

1. MATERIALS AND METHODS

Data for this report is drawn from 73 web applications examined in 2016 for which Positive
Technologies conducted in-depth analysis. Some of the applications are publicly available on the
Internet, while others are used for internal business purposes. We excluded vulnerabilities detect-
ed in the course of penetration testing, perimeter scanning, and online banking security audits;
this information can be found in the respective reports.1

Vulnerability assessment was conducted via manual black-, gray-, and white-box testing (with the
aid of automated tools) or automated source code analysis. Black-box testing means looking at an
application from the perspective of an external attacker who has no prior or inside knowledge of
the application. Gray-box testing is similar to black-box testing, except that the attacker is defined
as a user who has some privileges in the web application. The most rigorous method, white-
box scanning, presupposes the use of all relevant information about the application, including its
source code. Results of manual security assessment are given in Section 5 of this report, while the
results of automated scanning are in Section 6 .

Vulnerabilities were categorized according to the Web Application Security Consortium Threat
Classification (WASC TC v. 2), with the exception of Improper Input Handling and Improper Output
Handling, as these threats are implemented as part of a number of other attacks. In addition, we
distinguished three categories of vulnerabilities: Insecure Session, Server-Side Request Forgery,
and Clickjacking. These categories are absent from the WASC classification, but can be often
found in the web applications studied.

The Insecure Session category includes session security flaws, such as missing Secure and HttpOnly
flags, which allow attackers to intercept the user's cookies in various attacks.

Server-Side Request Forgery is a vulnerability that allows sending arbitrary HTTP requests while
posing as the system. After receiving a URL or an HTTP message, a web application performs an
insufficient destination check before sending a request. An attacker can exploit this vulnerability
and send requests to servers with restricted access (for example, computers on a LAN), which
can result in disclosure of confidential data, access to application source code, DoS attacks, and
other problems. For example, an attacker can obtain information about the structure of network
segments that are not available to external users, access local resources, and scan ports (services).

Clickjacking is a kind of attack on users involving visual deception. In essence, a vulnerable applica-
tion is loaded in a frame on the application page and is disguised as a button or another element.
By clicking this element, a user performs the attacker-chosen action in the context of that website.
The vulnerability that makes this attack possible occurs when the application does not return an
X-Frame-Options header and therefore allows showing the application in frames. In some brows-
ers, this vulnerability also allows performing a Cross-Site Scripting attack.

1  www.ptsecurity.com/ww-en/analytics/

http://projects.webappsec.org/w/page/13246978/Threat%20Classification
http://www.ptsecurity.com/ww-en/analytics/

4

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

Our report includes only code and configuration vulnerabilities. Other widespread security weak-
nesses, such as flaws in the software update management process, were not considered.

The severity of vulnerabilities was calculated in accordance with the Common Vulnerability
Scoring System (CVSS v. 3). Based on the CVSS score, our experts assigned vulnerabilities one of
three severity levels: high, medium, or low.

2. EXECUTIVE SUMMARY

All web applications analyzed have vulnerabilities.
Security flaws were found in all the applications analyzed. 58 percent had at least one high-sever-
ity vulnerability. At the same time, we see a positive trend: the number of websites with high-se-
verity vulnerabilities decreased by 12 percent compared with 2015.

Application users are not protected.
Most of applications allow attacks on their users. Moreover, a number of applications provide
insufficient protection of user data. For instance, we gained access to personal data of 20 percent
of the applications that process user information, including bank and government websites.

Leaks are still a pressing problem.
Approximately half of web applications are exposed to leaks of critical data, including source code
and personal data. 63 percent of web applications disclose the versions of software in use.

Web application vulnerabilities are an easy vector for LAN penetration.
One in every four web applications allows attacks on LAN resources. For example, an attacker can
access files, scan hardware on the LAN, or attack network resources. Besides, one out of every four
applications was vulnerable to SQL Injection (high severity), which allows attackers to access the
application database. In addition, this vulnerability could allow an attacker to read arbitrary files or
create new ones, as well as launch DoS attacks.

Manufacturing companies are the most vulnerable.
Almost half of manufacturing web applications received the lowest grade possible. The majority
of web applications in all industries—with the exception of finance—were exposed to high-se-
verity vulnerabilities. In finance, "only" 38 percent of applications had high-severity vulnerabilities.

64 percent of ASP.NET applications contain high-severity vulnerabilities.
Additionally, approximately one out of every two PHP and Java applications contains high-severity
vulnerabilities . PHP applications were particularly affected, with an average of 2.8 per application.

Production systems are more vulnerable than test applications.
In 2016, production systems turned out to be less protected. During manual testing, high-severity
vulnerabilities were found on 50 percent of testbeds and on 55 percent of production systems.
The number of high- and medium-severity vulnerabilities per application on production systems
was twice as high compared to test systems.

Source code analysis is more effective than black-box testing.
Manual analysis of source code enabled our experts to detect high-severity vulnerabilities in 75
percent of applications. Black-box testing revealed such vulnerabilities on only 49 percent of web
applications.

Automated testing is a fast way to find vulnerabilities.
Automated analysis of source code found an average of 4.6 high-severity, 66.9 medium-severity,
and 45.9 low-severity vulnerabilities per application. Source-code analysis with the help of auto-
mated tools can identify all exit points—in other words, all possible exploits for each vulnerabili-
ty—reliably and rapidly.

https://www.first.org/cvss/specification-document

5

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

Manufacturing

e-Commerce

Finance/Banking

Government

Telecom

Media

5%

45%
11% 3%

10%

26%

Production systems

Test systems

35% 65%

3. PARTICIPANT PORTRAIT

The applications represent companies from a wide array of industries, including finance, govern-
ment, media, telecoms, manufacturing, and e-commerce.

Almost two-thirds of these applications (65%) were production sites (in other words, currently op-
erating and available to users).

This year, PHP and Java were the most common development languages used. The proportion of
ASP.NET applications increased year-over-year. Development languages in the "Other" category
(Ruby, Python, etc.) accounted for only 7 percent.

Figure 1. Participant portrait

Figure 2. Production and test systems

Figure 3. Web application development tools

PHP

Other

ASP.NET

Java

7%

22%

34%

37%

6

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

High severity Low severityMedium severity

2010 2011 2012 2013 2014 2015 2016
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

93%

76%

46%

100%

61%

30%

90%

73%

45%

95%

62%

61%

90%

68%

80%

70%

58%

100%

50%

97%

67%

2014

2015

2016

High Medium Low

58% 41% 1%

70% 30%

68% 4%28%

4. TRENDS

All web applications, whether examined using manual or automated security assessment tools,
contained vulnerabilities with various severity levels. Only 1 percent of applications had solely
low-severity vulnerabilities. We can see some improvement in the percentage of applications
with high-severity vulnerabilities, which fell from 70 percent in 2015 to 58 percent in 2016. This
improvement is partially driven by the fact that companies took account of last year's security
findings when developing new web applications, and, perhaps most importantly, concentrated
on remediating high-severity vulnerabilities.

In general, we observed a discouraging trend in high-severity vulnerabilities during the three pre-
vious research periods. But growth in these vulnerabilities slowed down in 2015, and finally in 2016
they actually fell. Still, critical flaws were found in more than half of applications.

Medium-severity vulnerabilities were detected in almost all applications. Every year, this percent-
age is consistently in the range of 90 to 100 percent. The percentage of web applications with
low-severity vulnerabilities increased.

Figure 4. Percentage of web applications whose worst vulnerabilities were of high, medium, or low severity

Figure 5. Websites by vulnerability severity

7

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

0 2 4 6 8 10 12 14 16 18 20

High Medium Low

1.8

2.1

17.3

Low

Medium

High

2% 54%44%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High Medium Low

10%

9%

81%

5. MANUAL WEB APPLICATION SECURITY TESTING

Out of all vulnerabilities detected by manual testing, the majority (81%) were of medium severity,
with one tenth being of high severity. Compared to 2015, the share of high-severity vulnerabilities
substantially decreased, but this is explained by the fact that in 2016 far more medium-severity
vulnerabilities per application were detected.

Security flaws were found in all web applications. Manual testing uncovered high-severity vul-
nerabilities in more than half of analyzed applications (54%), 44 percent of applications contained
medium- and low-severity vulnerabilities, and a mere 2 percent of applications had only low-se-
verity vulnerabilities.

On average, manual analysis found 17 medium-severity, 2 high-severity, and 2 low-severity vulner-
abilities per application.

Figure 6. Vulnerabilities by severity (results of manual analysis)

Figure 7. Web applications by maximum vulnerability severity (results of manual analysis)

Figure 8. Average number of vulnerabilities per application (results of manual analysis)

8

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

58%

0%

URL Redirector Abuse

SQL Injection

Insufficient Authorization

Cross-Site Request Forgery

Clickjacking

Insecure Session

Information Leakage

Brute Force

Fingerprinting

Cross-Site Scripting

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

2015 2016 (high/medium/low risk level)

30%

25%

20%

25%

20%

29%

23%

35%

40%

48%

50%

54%

47%

57%

30%

63%

80%

75%

5.1. MOST COMMON VULNERABILITIES

In 2016, half of the top 10 vulnerabilities allowed performing attacks against web application users.

Figure 9. Most common vulnerabilities detected by manual testing (percentage of web applications)

As in 2015, Cross-Site Scripting (medium severity) tops the list and was found in 75 percent of the
web applications examined. Successful exploitation of this vulnerability could allow an attacker to
inject arbitrary HTML tags and JavaScript scripts into a browser session, obtain a session ID, con-
duct phishing attacks, and more.

Similarly to past years, Positive Technologies used its information on attacks against web appli-
cations to create a list of the most common attacks.2 Sources of data are pilot projects involving
deployment of PT Application Firewall. To hack a website or attack its users, attackers try to exploit
various vulnerabilities in web application design and administration. Research revealed that 58
percent of applications that took part in pilot projects underwent attempts to attack users with
Cross-Site Scripting—the most common vulnerability in this year's rating.

2  https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Web-Application-Vulnerability-2016-eng.pdf

Figure 10. Cross-Site Scripting attack attempts (percentage of web applications)

https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Web-Application-Vulnerability-2016-eng.pdf

9

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

84%

Figure 11. SQL Injection attack attempts (percentage of web applications)

Flaws leading to disclosure of information about the current software version (Fingerprinting) were
found in 63 percent of applications, taking second place. In addition, more than half of web applications
(54%) are vulnerable to Information Leakage, such as of source code and personal data.

Third place went to poor or non-existent protection against brute-force attacks. The percentage of
applications vulnerable to this kind of vulnerability increased by 10 percent year-over-year.

Session security flaws and Clickjacking took the next two places in our top 10 list. These categories
made their first appearance in 2016, so no comparison with the previous year is possible. While
developers became more careful about eliminating high-severity vulnerabilities that threaten
application owners, flaws causing damage to users took center stage this year. Vulnerabilities to
Cross-Site Request Forgery, which also allows attacks on users, were detected in 35 percent of web
applications.

As already mentioned, the total share of websites containing high-severity vulnerabilities has fall-
en, and only one high-severity vulnerability—SQL Injection—made the top 10 this year, yet still
it was found in 25 percent of web applications. According to our research, this vulnerability was
the most commonly exploited one in 2016: attackers attempted to exploit it in 84 percent of web
applications.

Client-side vulnerabilities were detected in 59 percent of all applications examined in 2016. Among
these vulnerabilities are Cross-Site Scripting, Cross-Site Request Forgery, session security flaws, and
other security problems that make it possible to attack web application users. The remaining 41
percent of detected vulnerabilities, such as Information Leakage and Insufficient Authorization, are
on the server side.

Client side

Server side

41%59%

Figure 12. Vulnerabilities by attack target

Most of the vulnerabilities detected (73%) were found in software code and are connected with
development mistakes—such as SQL Injection. Misconfiguration of web servers is responsible for
about a quarter of all security flaws.

Vulnerabilities in code

Configuration vulnerabilities

27%73%

Figure 13. Vulnerability types

10

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

23%

39%

7%

31%

Finance/Banking

33%

33%

17%

17%

15%

47%

16%

11%

11%

Government

Telecom

43%

14%

43% 33%

33%

34%

Manufacturing e-Commerce

Extremely Poor

Poor

Below Average

Average

Above Average

Acceptable

Extremely Poor

Acceptable

Above Average

Average

Below Average

Poor

16%
5%

12%

27%

8%
32%

Figure 14. Web application security level

5.2. ANALYSIS OF THREATS AND SECURITY LEVELS

We graded web application security based on the possible consequences of exploitation of the
vulnerabilities that we found, from "extremely poor" to "acceptable." An extremely poor security
level means high-severity vulnerabilities that, for example, allow an external attacker to perform
OS Commanding or lead to disclosure of sensitive information. In general, if a web application has
vulnerabilities of high severity, its security level varies from "extremely poor" to "below average."

The overall level of web application security is still rather low. Experts rated the security of 16 per-
cent of web applications as extremely poor.

One in every three examined web applications (32%) is characterized by a poor security level. Only
5 percent of applications are sufficiently protected.

The lowest grades ("poor" and "extremely poor") in 2016 went to applications used by online
stores, manufacturers, and telecommunications companies: more than half of them had poor or
extremely poor security. More than a third of e-commerce (34%) and manufacturing (43%) web
applications received the lowest grade possible, "extremely poor." The security of financial and
governmental applications is marginally better. Only 15 percent of telecom web applications
could boast of acceptable security. The sample size for media applications was insufficient for
drawing conclusions.

Figure 15. Web application security grade (by industry)

11

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

Cross-Site Scripting

Insufficient Session Expiration

Session Fixation

HTTP Response Splitting

Clickjacking

URL Redirector Abuse

Cross-Site Request Forgery

Insecure Session

0.3%

0.4%

0.5%

73.6%

3.5%
6.8%

7.3%

7.6%

0%

OS Commanding

Unauthorized Access to Functions/Content

Unauthorized Database Access

Attacks on LAN Resources

Local Files Reading

Information Leakage

Fingerprinting

Unauthorized Application Access

Client-Side Attacks

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High Medium Low

19%

22%

25%

25%

29%

60%

63%

75%

94%

By and large, the vulnerabilities that enabled attacks on users were Cross-Site Scripting, Cross-Site
Request Forgery, Open Redirect, Insecure Session, and Clickjacking. These development flaws are
in this year's list of top 10 common vulnerabilities.

An attacker can gain access to 70 percent of web applications. Such access is generally made
possible by a weak password policy, absence of brute-force protection, and ability to conduct
attacks on users.

The third and fourth places in our top 10 went to information leaks. Disclosure of information
about the software version in use is a low-risk vulnerability, but in the case of outdated software,
an attacker can take advantage of known vulnerabilities by using publicly available exploits.

By exploiting various vulnerabilities, we managed to obtain the source code of 8 percent of web
applications. By analyzing source code, attackers can detect other vulnerabilities in a web appli-
cation and advance an attack vector. Source code can contain sensitive information that enables
access to critical resources.

Figure 16. Most common threats

Figure 17. Vulnerabilities enabling attacks on users

In 2016, the most widespread threat was attacks on web application users: such attacks are pos-
sible in nearly all web applications (94%). As mentioned in the previous section, a quarter of web
applications contain vulnerabilities that can give an attacker access to databases. The same share
of web applications (25%) can be a vector of penetration to a corporate LAN: these applications
allow outsiders to scan hardware, learn about the network structure, and send requests to local
nodes. About one in every five applications (19%) makes it possible to execute arbitrary OS com-
mands on a server.

Note that DoS attacks were not attempted as part of application testing. Nevertheless, a number
of applications had vulnerabilities that allow performing such attacks.

12

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

20%8%

Users' personal data is also under threat—attackers can gain access to 20 percent of web appli-
cations that process such data, including financial and governmental applications. Attackers can
obtain information about users by taking advantage of an information leak or exploiting other
vulnerabilities, such as SQL Injection.

While reviewing critical threats by industry, we can notice that governmental, financial, and tel-
ecom applications contain the full range of high-severity vulnerabilities. Access to DBMS and
OS Commanding threats are more common among e-commerce and manufacturing web
applications.

Figure 18. Percentage of web applications
in which access to source code

was possible

Figure 19. Percentage of web applications
in which users' personal data

can be obtained

0%

DoS

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Manufacturing e-Commerce

Telecom Finance/Banking

Government

12%

11%

17%

0%

14%

Attacks on LAN Resources

19%

37%

33%

33%

14%

Local Files Reading

23%

42%

50%

33%

0%

OS Commanding

8%

21%

17%

67%

43%

Access to DBMS

19%

21%

33%

67%

43%

Figure 20. Critical threats by industry

13

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

0%

Finance/Banking

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

69%

38%

Manufacturing

71%

57%

e-Commerce

100%

67%

Government

83%

67%

Telecom

68%

74%

High Medium Low

100%

100%

100%

100%

84%

5.3. STATISTICS BY INDUSTRY

This section provides per-industry statistics on telecom, financial, e-commerce, governmental, and
manufacturing web applications. Statistics for media applications are not given here, since the
sample size was insufficiently large.

The majority of web applications in all industries—with the notable exception of finance—were
exposed to high-severity vulnerabilities. High-severity vulnerabilities were found on the sites of
74 percent of telecoms, 67 percent of governmental institutions and online stores, and 57 per-
cent of manufacturing companies. In finance, only 38 percent of applications had high-severity
vulnerabilities.

Medium-severity vulnerabilities were found in all examined web applications, with the exception
of some telecom applications. The telecom industry was prone to contrasts: many applications
had high-severity vulnerabilities, but at the same time, there was a small contingent of relatively
well-secured web applications containing only minor flaws.

Figure 21. Web applications by vulnerability severity

Finance/Banking

Manufacturing

e-Commerce

Government

Telecom

High Medium Low

67% 33%

57% 43%

74% 21% 5%

67% 33%

38% 62%

Figure 22. Web applications by maximum severity of vulnerabilities (percentage of applications)

14

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

0%

Finance/Banking

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1.1

16.2

0.8

Telecom

3.2

2.1

Manufacturing

1.3

2.4

e-Commerce

2.7

6.0

Government

1.3

6.2

High Medium Low

27.5

39.3

16.4

13.3

Figure 23. Average number of vulnerabilities per application by industry

Comparing web applications by their average number of vulnerabilities, governmental applica-
tions have more high-severity vulnerabilities than any other industry and rank first with 6.2 vul-
nerabilities per application. In 2015, this value was much smaller (0.7 vulnerabilities per web appli-
cation). In previous years, security assessment was carried out only for important governmental
web applications, for which security was one of the core development requirements. But now
governments are broadening their attention to encompass existing web applications, including
those with a rather low security level.

E-commerce web applications also have a large number of high-severity vulnerabilities. These
web applications also have the highest rate of medium-severity vulnerabilities. On average, 39.3
vulnerabilities per application were detected in e-commerce applications, compared to 27.5 vul-
nerabilities in governmental applications.

About two high-severity vulnerabilities on average can be found per manufacturing or telecom
application. The most secure are financial web applications, with only 0.8 high-severity vulnera-
bilities per application.

In 2016, one of the most common high-risk vulnerabilities in web applications across all industries
was SQL Injection. Other common vulnerabilities were XML External Entities, OS Commanding,
and Path Traversal. Various telecom and financial applications contained all these flaws, but this
may not necessarily be representative, since these industries also accounted for the majority of
the dataset.

15

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Manufacturing Telecom

e-Commerce Finance/Banking

Government

Path Traversal

8%

0%

33%

11%

0%

OS Commanding

8%

33%

0%

11%

57%

XML External Entities

8%

33%

33%

32%

0%

SQL Injection

19%

67%

33%

21%

43%

5.4. VULNERABILITIES IN WEB APPLICATIONS

BY DEVELOPMENT TOOLS

As in 2015, all examined applications, regardless of the development tool used, contained at
least medium-level vulnerabilities. Statistics are given for PHP, Java, and ASP.NET applications.
Applications written in other, less common languages were too few to provide meaningful statis-
tics. However, almost all applications written in less common languages contained high-severity
vulnerabilities, and in just one case were there only low-severity vulnerabilities.

Figure 24. Percentage of websites with common vulnerabilities, by industry

Figure 25. Web applications by maximum vulnerability severity

ASP.NET

Java

PHP

High Medium

53% 47%

54% 46%

64% 36%

The choice of PHP versus Java for development had virtually no effect on the severity of applica-
tion vulnerabilities in 2016. All applications had medium-severity vulnerabilities, and more than
half contained high-severity vulnerabilities.

The highest rate of high-severity vulnerabilities was observed among ASP.NET applications, with
64 percent containing such vulnerabilities. As compared to PHP and Java, the percentage of ASP.
NET applications with medium-severity and low-severity vulnerabilities is slightly lower: 93 and 50
percent respectively. However, the average ASP.NET application had fewer high-severity vulnera-
bilities than its PHP and Java counterparts.

16

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

0

ASP.NET

Java

PHP

5 10 15 20 25

High Medium Low

2.9

10.6

1.7

1.5

22.7

2.1

1.3

14.7

2.8

As mentioned previously, the number of high-severity vulnerabilities has fallen significantly com-
pared to previous years. On average, we see about two high-severity vulnerabilities per applica-
tion, with PHP applications having the highest number of such vulnerabilities (2.8). The number of
medium-severity vulnerabilities, on the contrary, increased compared to 2015 (for PHP and Java),
with Java applications containing twice as many vulnerabilities of this level as other applications.

0%

ASP.NET

Java

PHP

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High Medium Low

50%

93%

64%

79%

100%

54%

79%

100%

53%

Figure 26. Web applications with vulnerabilities of various severity levels

Figure 27. Average number of vulnerabilities per application, by development tools

The table includes statistics on the frequency of common vulnerabilities among resources devel-
oped by different tools.

PHP % of
websites

Cross-Site
Scripting 79%

Information Leakage 79%

Brute Force 74%

Fingerprinting 74%

Insecure Session 53%

Clickjacking 42%

Insufficient
Authorization 32%

SQL Injection 26%

OS Commanding 26%

URL Redirector Abuse 26%

Java % of
websites

Cross-Site
Scripting 64%

Insecure Session 57%

Cross-Site
Request Forgery 50%

URL Redirector Abuse 43%

Deserialization of
Untrusted Data 29%

Information Leakage 29%

SQL Injection 29%

Clickjacking 21%

Insufficient Author-
ization 21%

XML External Entities 14%

ASP.NET % of
websites

Cross-Site
Scripting 79%

Fingerprinting 79%

Brute Force 75%

Information Leakage 50%

Clickjacking 50%

Cross-Site
Request Forgery 42%

Insecure Session 42%

Insufficient
Authorization 33%

SQL Injection 29%

XML External Entities 21%

Table 1. Most common vulnerabilities by development platform

High Medium LowSeverity levels:

17

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

The most common vulnerability in all applications was Cross-Site Scripting. More than 60 percent
of applications, across all programming languages, were vulnerable to it. Security flaws related to
Information Disclosure are also common: Information Leakage and Fingerprinting.

Compared to 2015, PHP and Java applications had fewer high-severity vulnerabilities. For example,
Path Traversal, which was common in previous years, did not make the top 10 this year.

Nevertheless, 26 to 29 percent of applications in each category are vulnerable to SQL Injection,
more than a quarter of PHP applications (26%) are vulnerable to OS Commanding, and one of the
most common vulnerabilities for all other development tools is XML External Entities.

Regardless of development tool or language, however, applications across the board were gener-
ally exposed to common vulnerabilities, as shown in the following figures.

Insecure Session

57%

42%

53%

Information Leakage

29%

79%

Brute Force

14%

74%

Fingerprinting

14%

74%

Cross-Site Scripting

64%

79%
79%

79%

75%

50%

0%

URL Redirector Abuse

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

43%

17%

26%

SQL Injection

29%

26%

Insufficient Authorization

21%

32%

Cross-Site Request Forgery

50%

16%

Clickjacking

21%

42%

PHP Java ASP.NET

50%

42%

33%

29%

Figure 28. Applications with the most common vulnerabilities, by development tool

18

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

0

Testbed

Production System

5 10 15 20 25

High Medium Low

2.0

10.3

1.3

1.8

19.6

2.4

0%

Testbed

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

44%

94%

50%

Production System

83%

55%
98%

High Medium Low

5.5. VULNERABILITIES IN TEST AND PRODUCTION APPLICATIONS

In 2016, production systems proved more vulnerable than test systems. High-severity vulnerabili-
ties were found on 50 percent of testbeds and on 55 percent of production systems.

Production System

Testbed

High Medium Low

50% 50%

55% 2%43%

Figure 29. Systems by maximum vulnerability severity (percentage of systems)

Figure 30. Web applications with various vulnerability severity levels

Figure 31. Average number of vulnerabilities per system

Moreover, the number of high- and medium-severity vulnerabilities per application on production
systems was twice as high compared to test systems. One explanation is that security-conscious
companies (which test applications at the development stage, among other things) are better at
avoiding vulnerabilities. Another reason is that deployment and implementation are complicated
processes that add complexity, and therefore can cause new flaws. Some vulnerabilities can be
detected only on a fully configured and ready-to-use system.

These results demonstrate the need to implement application security processes throughout the
entire software lifecycle—from design and development to deployment and operation.

19

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

White Box

Black and Gray Box

19% 81%

5.6. COMPARISON OF TEST TECHNIQUES: BLACK BOX, GRAY BOX,
AND WHITE BOX

Manual analysis of security enabled our experts to apply black-, gray-, and white-box testing
methods. Head-to-head comparison of these methods is impossible, since different methods
were applied to different web applications, but we can look at the results to make a general assess-
ment of test technique effectiveness. Most web applications (81%) were analyzed using black- and
gray-box testing, without any access to the source code.

White-box testing, with analysis of source code, enabled our experts to detect high-severity
vulnerabilities in 75 percent of applications. Black-box testing, meaning that our testers did not
receive source code or other key information, revealed such vulnerabilities on only 49 percent
of web applications. Medium-severity vulnerabilities were found practically in all applications: 98
percent by black-box testing, and 92 percent by analyzing source code. Thus, white-box analysis
proved to be more effective in most cases. However, even an attacker who does not have prior in-
formation about a web application still has a good chance of finding a high-severity vulnerability.

In addition, attackers can obtain source code by exploiting various vulnerabilities, as already
demonstrated above.

Also note that in black- and gray-box testing, the testers were careful to avoid impacting applica-
tion performance or causing denial of service. But real attackers are unlikely to be so considerate.

On average, Positive Technologies detected 2.8 high-severity vulnerabilities per application when
analyzing source code (white box), and 1.9 vulnerabilities per application without source code
(black box). The difference between these two figures is not so dramatic compared to the pre-
vious period, because many of the same companies had learned valuable lessons from the prior
year's testing. White-box testing is highly effective, as can be confirmed by the automated testing
results provided in the following section.

Moreover, white-box testing detected three times more low-severity vulnerabilities than black-
box testing. There was a minimal difference in the number of medium-severity vulnerabilities de-
tected using the various techniques.

Figure 32. Applications by test technique used

Figure 33. Percentage of web applications with vulnerabilities of a given category (by testing technique)

0%

White Box

Black Box and Gray Box

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High Medium Low

67%

92%

75%

75%

98%

49%

20

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

0

White Box

2 4 6 8 10 12 14 16 18 20

4.1

17.9

2.8

Black Box and Gray Box

1.3

1.9

High Medium Low

17.1

6. AUTOMATED SECURITY ASSESSMENT

This section considers web applications that were subjected to analysis using an automated source
code analyzer. Since manual and automated techniques were used on different web applications,
same-application comparison of the results is not possible. Instead, we can consider the averages
of the results obtained by these two different methods.

All applications analyzed here were pre-production, and some of them were at an early develop-
ment stage. The vulnerabilities detected by automated scanning and represented in the statistics
were confirmed manually using testbeds.

Figure 34. Average number of vulnerabilities per application (by testing technique)

0

Deserialization of Untrusted Data

OS Commanding

XML External Entities

URL Redirector Abuse

Cross-Site Request Forgery

Insecure Session

Insufficient Authorization

SQL Injection

1 2 3 4 5 6 7 8 9 10

White Box Black and Gray Box

0

0.8

0.2

0.3

0.2

0.6

0.3

3.2

0.5

2.8

0.4

3.0

1.2

0.3

1.2

1.3

Information Leakage

Cross-Site Scripting

1.9

1.0

9.6

7.9

Figure 35. Average number of certain vulnerabilities per application by testing technique

As in previous years, white-box testing detected more high-severity vulnerabilities. For example,
analysis of source code revealed XML External Entity issues four times more often than black-box
testing did. Session security flaws, Cross-Site Request Forgery, and Open Redirect were detected
primarily with the help of white-box testing.

21

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

22%

100%

89%

High Medium Low

All examined applications had at least medium-severity vulnerabilities. As in 2015, high-severity
vulnerabilities were found in the vast majority of applications (89%).

Medium-severity vulnerabilities were discovered in all examined web applications.

High severity Medium severity Low severity

2015

2016

28,5% 66,9% 4,6%

40,4% 0,3%59,3%

Figure 36. Severity of vulnerabilities found (automated testing)

Figure 37. Web application distribution by maximum severity level (automated testing)

Figure 38. Web applications with vulnerabilities of various severity levels (automated testing)

Medium

High

11% 89%

Automated analysis of source code found an average of 4.6 high-severity, 66.9 medium-severity,
and 45.9 low-severity vulnerabilities per application. Moreover, two of the examined applications
had hundreds of high-severity vulnerabilities and around 2,000 medium-severity vulnerabilities,
but these applications have been omitted here to prevent distortion of the results.At the same
time, these values give an idea of the usability and effectiveness of automated analysis tools for
improving the security of web applications. Source-code analysis, unlike black-box testing, can
identify all exit points—in other words, all possible exploits for each vulnerability. This information
is needed to ensure total elimination of vulnerabilities.

The vulnerability classification given here is the same used in the automated security scanner.
This classification is different from the WASC classification thanks to its more detailed breakdown
of weaknesses, which in the WASC classification are combined into general categories, such as
Application Misconfiguration and Improper Filesystem Permissions.

We observe some improvements compared to the 2015 results. A quarter of vulnerabilities were of
high severity (28.5%), compared to 40.4 percent in the previous year. Similar to the situation with
manual checks in the previous section, part of this change may be due to the fact that the prior
year's testing inspired companies to be more careful with security during development.

22

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

0 10 20 30 40 50 60 70 80 90 100

High Medium Low

45.9

66.9

4.6

All web applications examined were vulnerable to Cross-Site Scripting. As manual testing confirms,
this is the most common vulnerability in the applications we tested. Detection of one such vul-
nerability is shown in the following screenshot. The web application does not check user-supplied
data, which allows attackers to target users by passing JavaScript commands, for example.

The code analyzer we used for testing can verify the vulnerabilities it finds by automatically gener-
ating exploits. In this example, the exploit was designed to send a request using the GET method.

The most common high-severity vulnerabilities were related to improper restrictions on file access.
Almost half of the web applications allow creating and modifying arbitrary files, which enables ex-
ecution of OS commands, such as if an attacker creates a PHP file. In almost all of these applications,
such flaws exist together with Arbitrary File Reading/Removal vulnerabilities. An example of one
such vulnerability in source code is shown in the following screenshot. The vulnerability allows an
attacker to perform Path Traversal attacks and read arbitrary files on the server.

Figure 39. Average number of vulnerabilities found per application, by severity (results of automated analysis)

Figure 40. Example of Cross-Site Scripting detection

Figure 41. Example of Arbitrary File Reading detection

The source code of a number of web applications had a high-severity SQL Injection vulnerability
related to insufficient input filtering. This vulnerability allows attackers to retrieve information from
the database. In some cases, an attacker could read arbitrary files, create new ones, and conduct
DoS attacks. The following screenshot provides an example of a vulnerability detected by the
analyzer and a test exploit that proves the vulnerability's exploitability.

23

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

High-severity XML External Entity vulnerabilities were less common this year but not unheard of.
They allow attackers to read arbitrary files or target corporate LAN resources. An example of this
vulnerability is shown in the following screenshot.

Automated analysis revealed many other flaws in the source code of the examined applications:
a hard-coded password, one-way unsalted hash function, and static random number generator
were among the findings.

Overall, the results confirm that web application security assessment must be implemented
throughout the entire software lifecycle. Automated source code testing allows identifying the
maximum number of coding errors in the shortest possible time, including critical mistakes caus-
ing high-severity threats, which if left unfixed can provide a tempting target for attackers.

Figure 42. Example of SQL Injection detection

Figure 43. Example of XXE detection

24

SECURITY TRENDS & VULNERABILITIES REVIEW
WEB APPLICATIONS (2017)

CONCLUSIONS

Although the percentage of web applications with high-severity vulnerabilities improved year-
over-year, overall security remains weak. More than 50 percent of web applications have high-se-
verity vulnerabilities, and this value rises sharply if an attacker has access to source code. By exploit-
ing the vulnerabilities we detected, attackers could obtain large amounts of sensitive information
including application source code and users' personal data, even from the websites of banks and
government institutions. Users cannot rest safe: almost all applications can be exploited by attack-
ers to target users.

We also found that web application vulnerabilities are the easiest way to penetrate the corporate
LAN. About a quarter of the tested websites could be used by attackers to attack internal company
systems.

Source-code analysis is much more effective than methods without access to the application
code. Moreover, performing such code analysis during development significantly improves the
security of the final application. Automated tools for source-code analysis should be used at multi-
ple stages of development, because analyzers are much quicker than manual analysis.

We found that production web applications were more vulnerable than test applications. This
underscores the need to perform security analysis not only during development, but when an ap-
plication is already in production. Preventive protection measures, in the form of a web application
firewall (WAF), are essential for keeping production systems safe.

Despite the modest improvements seen in 2016, web application security clearly still requires
more attention. The results demonstrate the need to implement application security processes
throughout the entire software lifecycle, both on the part of developers and system administra-
tors responsible for secure operation. Only comprehensive security measures—including secure
development procedures, preventive protection, and regular web application security testing—
can minimize risks and provide a strong level of security.

info@ptsecurity.com ptsecurity.com

About Positive Technologies

Positive Technologies is a leading global provider of enterprise security solutions for vulnerability and compliance
management, incident and threat analysis, and application protection. Commitment to clients and research has earned
Positive Technologies a reputation as one of the foremost authorities on Industrial Control System, Banking, Telecom,
Web Application, and ERP security, supported by recognition from the analyst community. Learn more about Positive
Technologies at ptsecurity.com.

© 2017 Positive Technologies. Positive Technologies and the Positive Technologies logo are trademarks or registered trademarks of Positive
Technologies. All other trademarks mentioned herein are the property of their respective owners.

Web_vulners_17_A4.ENG.0001.06

